Production and Soil Responses to Two Integrated Crop and Livestock Strategies in the Southern Piedmont USA

No Tillage

Alan J. Franzluebbers* John A. Stuedemann

USDA-Agricultural Research Service Watkinsville GA 30677 Tel: 706-769-5631, Email: afranz@uga.edu

Technical Support

Steve Knapp, Eric Elsner, Dwight Seman, Devin Berry, Stephanie Steed, Heather Hart, Faye Black, Kim Lyness, Robert Martin, Robert Sheats. Fred Hale, Colin McKaig

End of Vr 2

Partially supported by the Soils and Soil Biology program of the USDA-National Research Initiative (Agr. No. 2001-35107-11126) and the Georgia Agricultural Comm

Questions

To areze or not to areze?

- Grazing could diversify income. Will grazing compact soil?
- · Should cover crops be left intact as surface mulch or can they by effectively grazed without harm?

To MW or not to MW?

- * Conservation tillage known to benefit soil.
- If not tilled, will soil be compact? Can crops be successfully no-till planted without sufficient residue?
- Summer grein-winter cover crop or winter grain-summer cover crop? Summer offers greatest maximum yield / profit potential due to warm temperature, but is dependent upon
- variable precipitation.
- Winter-spring cropping has reliable precipitation, but yield / profit potential may only be moderate.
- Will occasional years of maximum yield in summer be more profitable than consistent, moderate yield in winter-spring?

Methods

- ✓ Set of 32 plots previously in tall fescue for 20 yr on Cecil sandy loam in
- ✓ Treatments (4 replications each) were a factorial of:
- Cropping system
- -summer grain + winter cover (SGWC) -winter grain + summer cover (WGSC)
- · Tillage management
- -conventional tillage (CT) -no tillage (NT)
- Cover crop management
 –grazed by cattle (GR+, 0.5 ha)
 –ungrazed (GR-, 0.2 ha)
- ✓ All crops received topdressing of ca. 40 kg N/ha
- Crop yield from entire paddock with combine ✓ Forage yield from ca. 2 m² areas in ungrazed plots
- ✓ Cattle weight after no water for 16 h
- ✓ Yearling steers during Year 1, cow/calf pairs during
- Years 2 and 3 ✓ Mean results from 2002/03, 2003/04, and 2004/05
- ✓ Soil collected from 5 to 8 cores (4-cm diam) in a
- plot on a yearly basis

 Soil organic C and N (dry combustion)
- Microbial biomass (CHCl3 fumigation-incubation)
 Bulk density (weight / volume of 5-8 cores)
- Water infiltration (30-cm ring, 1 hr, 2 rings/plot)
- Penetration resistance (strikes of 2-kg hammer
- 0.74 m onto a 2-cm-diam cone and 30' tip) Soil water content (time-domain reflectrometry)

--- Production Responses ---

----- Soil Responses -----

<, <<, and <<< indicate significance at ρ = 0.1, ρ = 0.01, and ρ = 0.001, respectively To graze or not to graze? Yield Grazed Ungrazed Component kg ha-1 kg ha-1 \$ Sorghum / rye (Summer grain / winter cover) Cover crop biomass 6537 Ω ñ <<< 277 485 Cattle gain Grain 1757 141 1609 129 [141] [614] Wheat / pearl millet (Winter grain / summer cover) Cover crop biomass 8505 **€**} >>> 722 Cattle gain 0 Ō <<< 305 534 Grain 2184 240 < 2424 267 [240] [801]

Conventional Tillage

	initiation			TYTI	⊨na	End of Yr 2			
Depth	GR-	GR+	GR-	GR+	GR-	GR+			
Soil Bulk Density (Mg m3)									
	entional		,	. 5	,				
0-3	1.12	1.07	1.12	1.10	1.16	1.17			
3-6	1.48	1.42	1.35 >	1.28	1.31	1.34			
6-12	1.57 >	> 1.52	1.43	1.43	1.40	1.43			
12-20	1.60 >	> 1.55	1.45	1.44	1.52	1.49			
No till	No tillage								
0-3	1.10	1.10	0.97	0.99	0.96	1.04			
3-6	1.43	1.46	1.37	1.38	1.40	1.40			
6-12	1.54	1.53	1.50	1.52	1.51	1.54			
12-20	1.57	1.58	1.52	1.57	1.54	1.54			
Surface Residue N (kg ha-1)									
CT	82	77	9	6	21				
NT	82	74	120	111	214	>> 158			

Assuming sorghum grain at \$0.08/kg, wheat grain at \$0.11/kg, cattle at \$1.75/kg

Yield component

To till or not to till?

Tiola component		· ·····age	· · · · · · · · · · · · · · · · · · ·							
Sorghum / rye (Summer grain	ghum / rye (Summer grain / winter cover)									
Sorghum grain (Mg ha ⁻¹)	1.66		1.70							
Sorghum stover (Mg ha ⁻¹)	3.07	<<<	5.29							
Unharvested rye (Mg ha ⁻¹)	6.04	<<<	7.03							
Cattle gain (kg ha ⁻¹)	204	<<	350							
Wheat / pearl millet (Winter grain / summer cover)										
Wheat grain (Mg ha ⁻¹)	2.36		2.25							
Wheat stover (Mg ha-1)	1.27	<	1.42							
Unharvested millet (Mg ha ⁻¹)	7.41	<	9.60							
Cattle gain (kg ha ⁻¹)	286		324							

<u>Summer arain / winter cover (SGWC) or winter arain / summer cover (WGSC)?</u>

Yield component	sgwc	WGSC	Soil carbon s	stock (N	∕lg ha ⁻¹) a	t the er	nd of 2 y					*
			Summer Grain-Winter Cover				Winter Grain-Summer Cover					
Mean yield (Mg ha ⁻¹)				Conv	Tillage	No 7	Гillage	Conv	Tillage	No 1	Γillage	LSD
Grain	1.68	2.30	Component	GR-	GR+	GR-	GR+	GR-	GR+	GR-	GR+	(p=0.1)
Stover	4.18	1.35										
Cover crop	3.47	4.61	Residue	0.3	0.6	3.6	3.3	0.4	0.9	6.5	2.6	0.9
Cattle gain	0.28	0.30	0-3 cm	4.3	4.3	11.5	11.8	4.4	3.9	11.6	10.3	1.0
9			3-6 cm	5.8	4.8	9.7	8.1	5.4	4.5	8.2	8.3	1.7
Coefficient of variation	(%)		6-12 cm	9.5	10.8	11.5	10.8	10.5	9.8	10.9	11.2	1.8
Grain	96	3	12-20 cm	13.5	14.3	10.9	9.3	15.5	14.4	7.7	8.8	3.0
Stover	47	21	Total	33.4	34.7	47.2	43.3	36.3	33.6	44.9	41.3	5.7
Cover crop	29	48	Stratification									
Cattle gain	60	50	ratio (0-6/12-20)	1.3	1.1	3.4	3.8	1.1	0.9	4.6	3.5	0.6

----- Implications ------

- 🐕 Grazing of cover crops was greatly beneficial to production and had little detrimental effect on soil during 2 years.
- * Conservation tillage enhanced cover crop production and preserved surface soil organic C, which led to positive effects on other soil properties, like mitigating compaction.
- * Cropping for grain was erratic in summer and consistent in winter-spring during the first 3 years of this study, but there are advantages and disadvantages of both cropping systems that require further investigation.